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We discuss a series of numerical experiments on the dispersion of neutrally buoyant 
particles in two-dimensional turbulent flows. The topology of two-dimensional 
turbulence is parametrized in terms of the relative dominance of deformation or 
rotation; this leads to a segmentation of the turbulent field into hyperbolic and elliptic 
domains. We show that some of the characteristic structural domains of two- 
dimensional turbulent flows, namely coherent structures and circulation cells, generate 
particle traps and peculiar accelerations which induce several complex properties of the 
particle dispersion processes at intermediate times. In general, passive particles are 
progressively pushed from the coherent structures and tend to concentrate in highly 
hyperbolic regions in the proximity of the isolines of zero vorticity. For large dispersion 
times, the background turbulent field is a privileged domain of particle richness; there 
is however a permanent particle exchange between the background field and the 
energetic circulation cells which surround the coherent structures. At intermediate 
times, an anomalous dispersion regime may appear, depending upon the relative 
weight of the different topological domains active in two-dimensional turbulence. ‘The 
use of appropriate conditional averages allows the basic topology of two-dimensional 
turbulence to be characterized from a Lagrangian point of view. In particular, an 
intermediate 6 anomalous dispersion law is shown to be associated with the action of 
hyperbolic regions where deformation dominates rotation ; the motion of the advected 
particles in strongly elliptic regions where rotation dominates over deformation is 
shown to be associated with a & dispersion law. Because neutral particles concentrate 
on average in hyperbolic regions, the & dispersion law is quite robust and it can be 
observed under very general circumstances. 

1. Introduction 
High vorticity concentrations inside coherent structures play a fundamental role in 

the dynamics of two-dimensional turbulence. Far from being homogeneously 
distributed, the vorticity field of two-dimensional flows is concentrated in localized 
domains behaving as coherent entities. These long-lasting vortices have lifetimes which 
greatly exceed the characteristic timescale of nonlinear turbulent interactions ; in two- 
dimensional turbulence, coherent structures are much more stable than in three 
dimensions as vorticity can act only orthogonal to the flow. The existence of coherent 
structures induce a basic inhomogeneity of the velocity field. As a whole, two- 
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dimensional turbulence can be considered as the synoptic result of a complex distortion 
process of the velocity field, caused and maintained by the carrying power of the 
coherent structures and by their interactions (McWilliams 1984, 1990; Benzi et al. 
1986; Benzi, Patarnello & Santangelo 1987, 1988; Babiano et al. 1987a; Legras, 
Santangelo & Benzi 1988). 

The above considerations indicate that two-dimensional turbulent fields are 
characterized by a complex topology in physical space. The characterization of this 
topology and the basic distinction between coherent structures and the surrounding 
turbulent field has been developed mainly in an Eulerian framework (McWilliams 
1984; Brachet et al. 1988; Ohkitani 1991). The effects of coherent structures on the 
turbulent dispersion capacity and, more generally, their signatures in a Lagrangian 
framework are much less studied. However, the majority of experimental measurements 
of large-scale (almost two-dimensional) geophysical flows are in the form of Lagrangian 
observations of freely drifting buoys or free ballon tracking. In the present study, we 
consider the statistical effects of the coherent structures and, more generally, of the 
two-dimensional turbulence topology on the motion of Lagrangian tracers, in order to 
provide a starting point for the proper interpretation of the available experimental 
results. 

The particle dispersion processes are herein studied by following the trajectories of 
an ensemble of neutral particles which are passively advected by a turbulent Eulerian 
velocity field; the latter has been obtained by numerically integrating the equations of 
two-dimensional turbulence. These Lagrangian techniques have been developed in the 
study of atmosphere and ocean dynamics; such methods allow an estimation of the 
space-time dynamical features of the flow and for identication of the basic non- 
homogeneous and non-isotropic mechanisms active in two-dimensional turbulence. In 
this context, two-dimensional turbulence arises from the interplay between an 
ensemble of high vorticity concentrations (coherent structures) and the surrounding 
background field characterized by low vorticity levels. Single particle trajectories are 
seen to develop, with different properties, in the various structural domains of two- 
dimensional turbulence. 

A basic issue addressed in this study is to understand whether the different domains 
of two-dimensional turbulence may be associated with different particle dispersion 
properties. In general, single particle trajectories test different components of the 
turbulent field, owing to the particle moving among the various topological domains. 
In order to separate the different contributions, we show that a partitioning of the 
turbulent field into elliptic and hyperbolic domains provides an appropriate 
parametrization of the turbulence (Weiss 198 1). The use of appropriate conditional 
averages on the set of advected particles then allows the different contributions to be 
distinguished. The results of this type of analysis indicate the existence of two 
intermediate anomalous dispersion regimes which may be unambiguously linked with 
the topology of two-dimensional turbulence. The problem of parametrizing the long- 
time dispersion coefficient as a function of topology will be addressed in a forthcoming 
paper. 

The work reported in this paper has been motivated by the desire to understand the 
dynamics of Lagrangian tracers in geophysical flows. Clearly, real geophysical flows 
are much more complicated than pure two-dimensional turbulence. In particular, with 
rotating spherical geometry, Rossby waves drastically alter the dispersion properties, 
both directly (Bartello & Holloway 1991) and through their inhibition of the formation 
of coherent vortices (McWilliams 1984). Analogously, three-dimensionality may 
generate new effects not accounted for by two-dimensional turbulent flows. Two- 
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dimensional turbulent dynamics represent, however, a good approximation of these 
geophysical situations where the contributions of quasi-two-dimensional vortices is 
significant. In the present work we take the point of view that two-dimensional 
turbulence is one of the simplest systems where the richness of GFD flows is potentially 
encountered. 

2. Elementary topology of two-dimensional turbulence 
2.1. Basic definitions 

A two-dimensional turbulent field may be decomposed in a simplified way by 
distinguishing the respective contributions of rotation and deformation to the square 
of the velocity gradient, i.e. by writing 

where U is the Eulerian velocity field, w refers to the vorticity and s to the deformation: 

= a,v-a,u, s2 = s;+s;, S, = a,u-a,v, s2 = a,v+a,u. 

A more sophisticated decomposition has been proposed by Weiss (1981); this has been 
adopted for example by McWilliams (1984), Brachet et al. (1988) and Ohkitani (1991). 
If the strain rate along a particle path is slowly varying with respect to the vorticity 
gradient, the Lagrangian evolution of Vw is then given by a linear differential equation 
whose solution is 

vo z exp ( i ~ b )  ; (2) 

where Q = s2-w2.  ( 3 )  

Even though the Weiss approximation is rather crude, it has the advantage of 
simplifying the picture of two-dimensional turbulence by an elementary partitioning of 
the field into two distinct domains, namely (a) elliptic domains (Q  c 0), where rotation 
dominates deformation, w2 > s2;  and (b) hyperbolic domains (Q > 0), where 
deformation dominates rotation, w2 < s2. It is important to recall, however, that the 
elliptic domains may be associated either with the vortex cores or with those regions 
in the background turbulent sea among the coherent structures where the fluctuating 
Q-field takes negative values. Analogously, hyperbolic regions may be found either in 
the background turbulence or in the organized structures surrounding the vortex cores, 
which constitute what we call here the circulation cells. Strictly speaking, the dynamical 
importance of the two types of elliptic or hyperbolic regions may be quite different (e.g. 
coherent versus random evolution). 

2.2. Topology from Eulerian numerical simulations 
The barotropic two-dimensional vorticity equation has been integrated on a doubly 
periodic square lattice (0,27r ; 0,27c) by using a pseudo-spectral approximation 
(Basdevant et al. 1981). Dissipation of enstrophy near the cutoff scale is parametrized 
by the 'Iterated Laplacian Method'; a linear friction dissipates energy at larger scales. 
The details of the numerical simulations used in this work have been thoroughly 
described by Babiano et al. (1987a, 1990). The resolution of the Eulerian numerical 
simulations considered here is 128 x 128 and 512 x 512. The forcing is defined by 
keeping the amplitude of the zonal mode (O,k,) fixed. The type of forcing and 
dissipation chosen here have been widely employed in past numerical experiments. In 
the 128 x 128 experiment (called R128F10) we have chosen k, = 10, the non- 
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FIGURE 1. The spatial distribution of (a) Q(x,y ,  t )  and (b)  the Eulerian kinetic energy 
E(x, y ,  t)  for the R128F10 numerical simulation of forced and dissipated, stationary two-dimensional 
turbulence. The different colours correspond to different values of Q and E, as indicated in each panel. 
The white line in each panel indicates where the cross-sections of the fields shown in figure 2 have been 
taken. 

dimensional Eulerian kinetic energy of the field is 3 = 53.5 and the non-dimensional 
Eulerian enstrophy is Z = 2600. The mean non-dimensional Eulerian integral timescale 
is = 0.14, the mean non-dimensional Lagrangian integral timescale is T,  = 0.035 
and the time step is At = 0.0001. The scale factors used to non-dimensionalize th'e 
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FIGURE 2. Cross-sections of (a)  the Q and (b) the E fields shown in figure 1. The two cross- 
sections have been taken along the white lines cutting the fields in figure 1 .  

equations have been obtained by prescribing the forcing scale to be 50 km and the 
mean kinetic energy to be 12.5 cm2 s - ~ .  These constraints give the scale factors t+ = 330 
days and 1' = 159 km. In the 512 x 512 experiment (called R512F40), we have chosen 
k, = 40; in this case, the non-dimensional scale of the coherent structures is about four 
times smaller than for experiment R128F10. The non-dimensional Eulerian kinetic 
energy of simulation R512F40 is E = 627 and the non-dimensional Eulerian enstrophy 
is Z = 126 500. The mean non-dimensional Lagrangian integral timescale is 

= 0.013; the time step is At = 0.000025 and the scale factors are t+ = 1304.6 days 
and l+ = 636.6 km. The present simulations represent a non-divergent two-dimensional 
approximation of the ocean dynamics without the p-effect. 

The Lagrangian motions in the above Eulerian fields have been obtained by a 
particle advection scheme with a third-order spline interpolation and a second-order 
time integration. The feasibility of Lagrangian numerical experiments by integrating 
the particle motions in a numerically integrated Eulerian velocity field has been 
examined by Haidvogel (1982), Zouari & Babiano (1990) and by Zouari (1991). 

A typical example of the structure of two-dimensional turbulence is given in figure 
1 (a, b), which shows respectively the spatial distribution of the quantity Q(x,y,  t )  and 
of the Eulerian kinetic energy E(x, y ,  t )  as obtained from the R128F10 experiment. The 
corresponding vorticity field is given in figure 4. Figure 2(a, b) shows the cross-sections 
of Q and of the Eulerian turbulent energy E along a line encompassing the entire 
simulation domain (the cross-section is shown as a white line on the fields of figure 
1 a, h). In this type of turbulent flow, insulated coherent structures have approximately 
the same scale D, = n/k,, where k, is the forcing mode. The inverse energy range is 
spectrally located between D, and D, = n/kE, where k ,  is the most energetic mode. In 
the present experiment, k, = 10 and k, = 3.3. The scales D, and D, are respectively of 
6.4 and 19.4 grid intervals. The particular value of the forcing scale considered here 
provides a limited number of well-defined vortices with well-developed circulation 
cells, as it can be seen from figure 1 (a, b). 

A partitioning based on the Weiss criterion would divide the turbulent field only into 
elliptic (Q -= 0) and hyperbolic (Q > 0) domains, independently of the dynamical 
nature of the elliptic regions (vortex cores or negative-Q regions in the background 
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FIGURE 3. Cross-section of the energy (curve A) and of Q (curve B) in a typical two-dimensional 
coherent structure and in its surroundings. The abscissa is given in grid spacings. The vortex 
considered here is the coherent structure centred approximately on the grid point (100,85), in the 
upper right of figure 1. 

turbulent field) or of the hyperbolic domains. However, figures 1 and 2 illustrate how 
regions with the same sign of Q may have a very different structure: For example, the 
strong hyperbolic regions which we have called circulation cells usually surround the 
coherent structures and behave as organized domains at the periphery of the vortex 
cores; their dynamical role is quite different from that of hyperbolic patches inside the 
background turbulence. In fact, the study of chaotic advection in two-dimensional 
turbulence (Babiano et al. 1993) has shown that the values of the Lagrangian 
Lyapunov exponents are different in the circulation cells and in hyperbolic patches in 
the background turbulence: in this case, a partitioning of the two-dimensional 
turbulence in terms of both Q and E is necessary. 

A detailed view of the energy ( E x  10') and of the Q-distribution in a coherent 
structure and in its surroundings is given in figure 3, which shows a cross-section of 
these fields for the large coherent structure visible in figure l ( a ,  b) centred 
approximately on the grid point (100,85). For a coherent structure, the maximum of 
the energy is attained at scale D,  corresponding with the isoline Q = 0, which defines 
the boundary of the vortex core. Inside the isoline Q = 0, the value of Q rapidly 
decreases towards the minimum Q x - w 2  which is attained in the proximity of the 
vortex centre where the deformation is very small and an almost solid-body rotation 
is observed. Outside the isoline Q = 0, the value of Q reaches a positive maximum in 
the entrainment region where deformation dominates rotation. This domain is the 



Elementary topology of two-dimensional turbulence 539 

well-structured circulation cell surrounding the vortex core. In this region, the energy 
decreases from the maximum values, attained in the proximity of the isoline Q = 0 
which may be considered as the boundary of the vortex core, towards the small values 
encountered in the background turbulence. This allows three basic topological 
domains of two-dimensional turbulence to be defined. 

(i) The background turbulent field. This is a region characterized by low energy and 
moderate values of Q oscillating between positive and negative values, say E < E, and 
-Qo < Q < Q,, where E,, and Q, are appropriately defined energy and Q thresholds. 
The background turbulence is a mixture of elliptic and hyperbolic regions. 

(ii) The circulation cells at the periphery of coherent structures. These are strongly 
hyperbolic regions where Q 9 Q, and E > E,. 

(iii) The vortex cores. These are strongly elliptic domains where Q -g - Q,. Clearly, 
the centres of the vortices are characterized by low energy. 

For the turbulent field displayed in figure 1, an indicative energy discriminator 
between the circulation cells and the background turbulence is the value E, M 30 (in 
dimensionless units) and the maximum energy of the circulation cells is fixed at about 
Em z 200. Values of Q above the threshold Q, = lo4 (in dimensionless units) are 
associated with the circulation cells while values of Q less than - Q, are found in the 
vortex cores. In the background turbulent field, the absolute value of Q is much smaller 
(- Q, < Q < Q,) and the energy is less than E,. In this domain, the spatial distribution 
is dominated by regions with positive values of Q(0 < Q < Q,). The strong jump in the 
value of Q between the ‘inside’ of a vortex and the surrounding circulation cell is clear 
evidence of the coherent nature of the vortices. 

Clearly, even the above partitioning technique produces just a rough approximation 
of the topology of two-dimensional turbulence. For example, if the elliptic and 
hyperbolic domains display self-similar properties, then these may be hidden by the 
above parametrization because elliptic and hyperbolic domains are mixed in region (i). 
In addition, the values of the energy and Q thresholds separating the various regimes 
may vary from one turbulent field to another. In the present work we show that single- 
particle dispersion, contrary to chaoticity properties, may be appropriately understood 
in terms of the dominance of hyperbolic or elliptic regions, without the need of adding 
an energy criterion. This may well be due to the peculiar behaviour of advected 
particles which usually avoid strongly elliptic regions. 

3. Single-particle dispersion : definitions and experimental illustration 
3.1. Dejinition 

The study of Lagrangian particle dynamics is herein based on the analysis of single- 
particle dispersion. The single-particle dispersion A2 of an ensemble of advected 
particles is defined as 

where x(a , t )  is the position of an advected particle at time t ,  a is its Lagrangian 
coordinate at time t’ (taken as the time origin) and ( . ), is an ensemble average over 
all particles (i.e. all values of a). The value of a is used as a label of the particle. If the 
turbulence is homogeneous, the dependence of the single-particle dispersion on a 
and/or t’ is negligible. In the more general case, the single-particle dispersion depends 
on the dynamics properties of the characteristic domains of the turbulent field. 

The single-particle dispersion (4) is a Lagrangian characteristic related to the 
Lagrangian velocity autocorrelation function and to the Lagrangian energy spectrum. 

AZ(a(t’), t )  = ( (x-a(t ’ ) ) . (x-a(t ’ ) ) ) , ,  (4) 
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FIGURE 4. For caption see facing page. 
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FIGURE 4. Time evolution of (a) the particle distribution, (b)  Eulerian energy, and (c) Eulerian 
vorticity levels. The four images correspond to the times t = 0, t = 0.1, t = 0.8 and t = 2. Particles in 
the inner ring C1 are coloured black while particles in thc outer ring C2 are coloured green. 
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The single-particle dispersion at both small and large times can be obtained by the 
Taylor (1921) theorem. In this context, (4) yields the following asymptotic behaviour : 

A2(a, t )  w 2bt2 when t --f 0, (5) 

A2(u, t )  x 2Kt when t + 00, (6) 

where I = :( 11 V(u, t') 11 + I( V(a, t )  11 2 ) a  is the mean Lagrangian kinetic energy, V(a, t )  is 
the Lagrangian velocity of the particle a at time t and Kis the eddy diffusivity (all these 
definitions can be generalized to tensor notation). 

The above asymptotic results have recently been extended by Babiano et al. (1987b), 
by considering the natural link between the single-particle dispersion and Lagrangian 
energy spectrum. For stationary and homogeneous Lagrangian statistics characterized 
by a Lagrangian energy spectrum P(v) w vdn, where v is the (Lagrangian) frequency, 
the dominant behaviour of the single-particle dispersion is 

A2 - t2 for n > 1, (7) 

A2 - tn+l for -1 < n < 1. (8) 

From (7), (8) one can see that : (i) the behaviour ( 5 )  no longer depends on the slope of 
the Lagrangian energy spectrum; and (ii) the signature of the asymptotic Brownian 
regime (6) is a flat Lagrangian energy spectrum (n w 0). The important conclusion is 
that the robustness of the behaviour ( 5 ) ,  (6) allows the dispersion properties to be 
disconnected from the rather restrictive hypothesis of homogeneity. This fact is in 
complete agreement with the statistical results furnished by the analysis of Lagrangian 
data from non-homogeneous oceanic and atmospheric velocity fields where the 
behaviour (5), (6) is systematically observed. In addition, (8) allows the existence of 
anomalous diffusion regimes at intermediate times linked with a spectral index n =?= 0. 
In this regard, we recall that recent studies of drifter dynamics have detected a regime 
of anomalous diffusion A2 cc tl.' linked with a Lagrangian energy spectrum P(v) z 
(Osborne, Kinvan & Provenzale 1989; Sanderson, Goulding & Okubo 1990; 
Provenzale et al. 1991 ; Sanderson & Booth 1991). The dynamical origin of this regime 
is still unclear; analogously, it is unclear which is the value of the time delay required 
for the drifter absolute dispersion to become Brownian-like. 

The asymptotic behaviour ( 5 )  and (6) is classically derived in the limit of timescales 
which are respectively much smaller or larger than the Lagrangian integral timescale TL. 
The large-time dispersion regime is usually observed for time delays which are also 
much larger than an appropriate Eulerian decorrelation time TE; after this time the 
increments in the particle trajectory become independent of each other and a classic 
Brownian motion may be observed, independent of the turbulent topology. Anomalous 
diffusion at asymptotically larger times may be observed only for a divergent TE. At the 
other end of the timescale, at very short times the particle trajectories are comparable 
to ballistic motions, and the classic form A2 K t2 depends only on energy level. At 
intermediate times (e.g. TL < t < TE), a dynamical regime different from the asymptotic 
behaviour (5) ,  (6) may be present. These times are excluded from the classical analysis 
based on the Taylor theorem; nevertheless, intermediate times are often the relevant 
ones from the point of view of practical applications. 

3.2. Experimental illustration of a dispersion process 
In figure 4 we show an illustration of the particle distribution and of the energy and 
vorticity levels for a typical dispersion experiment. The Eulerian field considered here 
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FIGURE 5. (a) The global single-particle dispersion A2 for the initial sowing in a coherent structure 
(solid curve), and for a regular sowing in the entire domain (dashed curve). (b) The time evolution 
of the mean Lagrangian kinetic energy (curve A) and of the mean value of Lagrangian Q (curve B); 
the averages are taken over the trajectories of the particles sown in the proximity of the isoline Q = 0. 
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is R128F10. The various panels of figure 4 show the Eulerian field and the particle 
distribution at times t = 0, 0.1, 0.8, and 2. As mentioned above, high energy and 
vorticity levels are correlated with the action of coherent structures while low energy 
and vorticity levels, represented in dark blue, are found in the background turbulent 
field. The medium energy levels, represented in green, may on average be correlated 
with the circulation cells at the vortex peripheries. The circulation cells are physically 
composed of the portions of the background field which are carried by isolated vortices 
and by the regions of close vortex interactions. In this experiment, two ensembles of 
6000 particles were initially placed in two rings Cl  and C2 outside the isoline Q = 0 of 
the vortex shown in figure 3. The two rings are centred in the vortex epicentre; the 
outer radii are equivalent to 8 and 12 grid intervals for C1 and C2 respectively, the 
inner radii are equivalent to 6 and 10 grid intervals respectively. 

Panels (a, b, c) of figure 4 show that the particles disperse towards low or medium 
energy and vorticity levels. High-vorticity domains and active coherent stuctures 
clearly display a great impermeability to inward particle fluxes from outside regions. 
At large dispersion times ( t  = 2), the particle distribution is rather homogenized, even 
though the majority of coherent vortices are still visible, being characterized by an 
almost complete lack of trapped particles deep inside them. The results shown in figure 
4 confirm that passive particles cannot penetrate the inner core of existing coherent 
structures. 

At intermediate times ( t  = 0.8), figure 4 shows that the advected particles tend to 
concentrate in the circulation cells surrounding the coherent structures. This is 
observed for circulation cells corresponding to different vortices, not just for the 
circulation cell surrounding the vortex where the particles were initially seeded. These 
results indicate that these highly hyperbolic regions at the periphery of vortex cores 
seem to be preferred by neutral particles, which, by contrast, tend to avoid strongly 
elliptic regions. Note, in particular, that the circulation cells are domains where the 
vorticity is very small. In fact, the tendency of passively advected neutral particles to 
concentrate in the proximity of the isolines w = 0 is a more general result : as it is shown 
below, even though at large times the particle distribution is apparently homogenized, 
there is always a significant concentration of the neutral particles in the proximity of 
the w = 0 isolines in the background turbulent field. 

3.3. Particle traps and circulation cells 
We now analyse in detail the single-particle dispersion properties for two different 
initial conditions on the particle distribution. We consider the dispersion from an 
isolated vortex, and the dispersion from a regular sowing in the entire domain. The 
cloud in the vortex is composed of 4000 particles, sown in groups of 100 on 40 different 
vorticity isolines where Q < 0. The regular sowing is composed of 8000 particles 
initially deployed on a regular grid in (2n, 2n). 

Figure 5 (a) shows the single-particle dispersion (4), averaged over all particles, for 
an initial sowing in the isolated vortex shown in figure 3 (solid curve) and in the entire 
domain (dashed curve). Figure 5(b) shows the evolution of Q and of the Lagrangian 
kinetic energy &(€ x lo2) as obtained by an average over the particles sown on a 
vorticity isoline in the vicinity of the isoline Q = 0 for the vortex. The isoline Q = 0 
may be considered as the boundary of the vortex core; we denote these particles by a,. 
The single-particle dispersion from the vortex can be described in four distinct phases. 
First (phase I : t < 0.2, Q < 0),  the particles disperse in the vortex and remain trapped 
inside it. The small-time asymptotic law ( 5 )  is obeyed until the particles undergo 
regular oscillations determined by the diameter of the vortex D,. This corresponds to 
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the flattening of the absolute dispersion between about t = 0.01 and t = 0.2. The 
trapping episodes last for about t - t' x 40c. In this phase, the values of the kinetic 
energy and of Q of the a, particles are approximately constant. In the second phase 
(phase 11: 0.2 < t < 1, Q < 0), the particles are rapidly ejected from the vortex core. 
The value of the kinetic energy of the a, particles decreases while the values of Q show 
a regular increase. In the third phase (phase 111: 1 < t < 2, Q > 0), the particle 
dispersion from the vortex is slowed down again since the particles are trapped in the 
circulation cell surrounding the vortex (second knee in the absolute dispersion curve). 
The circulation cells are characterized by the most energetic scale D,, which represents 
an upper bound to the inverse energy cascade (Babiano & Zouari 1993). During this 
phase, the particles a, are characterized by values of € x Em and Q > 0 since 
deformation dominates rotation. This phase is quite long and it is characterized by a 
certain degree of stationarity. In spite of these traps, however, the particles are 
progressively pushed towards low-vorticity isolines. In the final phase (phase IV : 
t > 2, Q > 0 and Q < 0), the particles reach the background turbulent field; at 
asymptotically large times the dispersion process may be described in terms of the 
Brownian dispersion (6).  

The behaviour of the particles a, may be strictly related to the topology defined in 
92. In particular, one may note that the circulation cell at the periphery of the vortex 
core (Q 9 0) is a region of particle trapping where neutral particles may reside for a 
long time (trapping times of the order of 30 z). Conversely, the absolute dispersion 
from a regular particle sowing (dashed curve in figure 5a) does not display any 
trapping phase. In this case, one may see that the observed dispersion law is an average 
of the different dispersive phases described above, i.e. an average of the contributions 
coming from both the elliptic and hyperbolic regions. The average dispersion for the 
regular particle sowing displays an intermediate dispersion phase characterized by a 
power law A2 cc t" with a M for times between about t = 0.1 and t = 1. An obvious 
question at this point concerns the origin and universality of the power-law behaviour 
observed above, as well as a detailed understanding of the role of the different 
topological domains in the particle dispersion process. To answer this question, in the 
following we introduce a normalization of the Q-values which allows better separation 
of the various contributions of the turbulent fields to the particle dynamics. 

3.4. Normalization of the elliptic and hyperbolic regions 
In general, the precise values of Q-thresholds separating the different dispersion phases 
described above vary from one turbulent field to another. Analogously, the variance 
Q-fields with respect to the average values may also vary depending upon the situation 
considered. To circumvent this difficulty, from (1) to (3) we define a normalized value 
of the parameter Q as 

Q -  S2 - w2 -- 
Q* = 2/IVU(12 s 2 + w 2 '  (9) 

The parameter Q* maintains the same sign as Q (negative in elliptic domains and 
positive in hyperbolic regions); however, the amplitude of Q* is normalized between 
- 1 and + 1. Inside strongly elliptic regions (Q < 0, s2 M 0), Q* + - 1 ; conversely, in 
strongly hyperbolic domains (Q > 0, o2 M 0) ,  Q* + 1. A value Q* x - 1 characterizes 
both the strong vorticity concentrations inside the coherent structures and those 
regions of the background turbulence where the deformation is almost absent. A value 
Q* M 1 characterizes the circulation cells surrounding the coherent structures and 
those regions of the background turbulence where w x 0. In the following, we show 
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FIGURE 6. Isolines of the vorticity field and distribution of neutral particles at an instant during the 
interaction between two coherent structures. The passive particles were initially sown inside each one 
of the two vortices. The vortex interaction induces a filamentation of the vorticity field and the 
subsequent ejection of some of the particles. The particle distribution shows that the distribution of 
ejected particles follows quite closely the isoline w = 0. 

that passively advected neutral particles display a neat tendency to concentrate in 
regions where Q* x 1. 

In figure 4, we have shown that during the dispersion process neutral particles 
concentrate in the circulation cells around the coherent structures; in these regions, the 
vorticity levels are quite small and Q > 0 (see the particle distribution at r = 0.8, for 
example). Figure 5(b) confirms that these regions are domains of particle trapping. 
These regions are characterized by values of Q* close to 1 owing to the small values 
of w.  For large dispersion times ( t  = 2, figure 4), owing to the increasing attraction of 
the particles towards the background turbulence the particle distribution is 
homogenized. This latter domain is characterized by small (positive and negative) 
values of w ;  the network of isolines w = 0 thus constitutes what may be called the 
support of the background turbulent field. Clearly, Q* z 1 in the proximity of 
w = 0. 

The correlation between the passive particle dynamics and the isolines w = 0 is 
further illustrated in figure 6, which shows the interaction between two coherent 
structures as visualized by the isolines of the vorticity field and by the distribution of 
passive particles initially sown inside each one of the two vortices. The vortex 
interaction induces a filamentation of the vorticity field and the subsequent ejection of 
some of the particles. The figure shows that the distribution of ejected particles follows 
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FIGURE 7. Distribution of the number of particles N,, of the Lagrangian mean energy and of 2 IjV U 1 1  
as functions of Q*, for different times. Curves (a) show the percentage of particles (lo2 x NJN,, , ,  
where N,,, = 8000 is the total number of particles); curves (b)  report the normalized Lagrangian 
kinetic energy E / E  where E = 53.5; curves (c) report 211VU1/2/z where Z = 2600. Different curves 
in each group correspond to different times. 

the isoline w = 0 quite closely. During this process, the mean velocity of the advected 
particles is almost parallel to the isoline w = 0, even though the velocity field is non- 
stationary. This happens in both the circulation cells and the background turbulence; 
in both cases, the topology is characterized by Q* M 1. These two types of hyperbolic 
regions are quite different from an energetic point of view; however, in both these 
deformation-dominated domains the mean velocity turns out to be parallel to the 
isolines o = 0, and the advected particles tend to follow these isolines. This behaviour 
is consistent with the results obtained by Babiano et al. (1987a) on the dynamics of 
passive scalar tracers in two-dimensional turbulence. 

3.5. Statistical weight of the ell@tic and hyperbolic domains 
Given the parametrization of the turbulent field in terms of Q*, we may now evaluate 
the statistical weight of the different topological domains in the dispersion law 
observed for a regular sowing (dashed curve in figure 5a). Figure 7 shows the 
distribution of the number of particles N,, of the Lagrangian mean energy and of the 
quantity 211 V U 1 1  defined by (1) as functions of Q*, for different times. Curves (a) show 
the percentage of particles (lo2 x N p / N t o t ,  where Ntot = 8000 is the total number of 
particles), curves (b) report the Lagrangian kinetic energy normalized by the mean 
turbulent kinetic energy E = 53.5 (E /E  x lo), and curves (c) report 2 11 V U 11 normalized 
by the enstrophy of the field, Z = 2600. Different curves in each group correspond to 
different times. 
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As a first observation, we note that the results reported in figure 7 indicate that all 
the quantities defined above are statistically stationary during the dispersion process. 
The shape of the distribution of N p  quantitatively confirms that passively advected 
neutral particles tend to sample preferentially regions where Q* = 1. In the present 
case, the particles have been uniformly seeded in all the domain and even at time 
t = 0 they preferentially sample the hyperbolic regions. This is because these regions 
occupy the largest portion of the turbulent flow. In the case of particles seeded only in 
elliptic regions where Q* < 0, the curve N,(Q*) evolves with time and it asymptotically 
attains the shape shown in figure 7. These findings agree with the results reported by 
Babiano et al. (1987a) and by Ohkitani (1991), which already indicated the tendency 
of passive scalar tracers and passive neutrally buoyant particles in two-dimensional 
turbulence to evolve into those regions of the turbulent field characterized by small 
vorticity levels. 

The results reported in figure 7 also indicate that the average kinetic energy of the 
advected particles is approximately independent of the value of Q*. This should have 
been expected since Q* is not a good energy discriminator. Clearly, every time 
dynamical behaviour is well parametrized by the value of Q*, then a parametrization 
in terms of the Lagrangian kinetic energy is scarcely useful. This seems to be the case 
for the average properties of the dispersion of passive tracers, where a three-region 
segmentation such as that discussed in 92.2 should probably be of limited interest and 
the parametrization in terms of Q* is more enlighting. On the other hand, if one is 
interested in the behaviour of insulated vortices, or in the dynamics of circulation cells 
as opposed to that in the background turbulence, then a segmentation based on the 
values of both Q* and E/Eis appropriate. This indicates that the proper parametrization 
is probably not an absolute choice but it is, rather, dependent on the type of question 
to be answered. In the next section we consider this problem again in the framework 
of absolute dispersion at intermediate times. As a final remark, we note that the 
dependence of 2 /I V U/I on Q* is almost opposite to that of N p  ; this result indicates that 
the regions where the particle concentration is large are characterized by small velocity 
gradients. 

From the above results on the dependence of N ,  on Q*, we may conclude that the 
dispersion law displayed in figure 5(a)  (dashed curve) is dominated by the strongly 
hyperbolic regions where Q* x 1. However, since the average kinetic energy is 
approximately independent of Q*, the dominance of the regions with Q* x 1 does not 
modify the small-time asymptotic behaviour (9, which depends only on the energy of 
the turbulent field. An important question, then, concern the respective effects of the 
hyperbolic and of the elliptic regions on the dispersion properties at intermediate times, 
as well as their effect on the long-time asymptotic law (6). In the next section we 
consider the first question, while the long-time asymptotic behaviour will be left to a 
future work. 

4. The intermediate dispersion phase : experimental results 
In this section, we examine the effects of the elliptic and hyperbolic regions on the 

properties of absolute dispersion (4) at intermediate times. To this end, here we 
explicitly consider the two types of Eulerian fields mentioned in $2, namely R128F10 
and R512F40. In all the experiments considered here, we have integrated the 
Lagrangian motions of 8000 particles which have been initially sown on a regular grid 
in the entire domain. The Lagrangian time step for the numerical integration of the 
particle motion is equal to the Eulerian time step of the model; however, the 
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Lagrangian parameters (particle positions, velocities etc.) have been recorded only at 
N ,  = 2000 and N ,  = 1600 time instants for the R128F10 and R512F40 experiments 
respectively. The time steps between two successive Lagrangian recording are thus 
At, = 0.003 and At, = 0.00025 for the two experiments. 

4.1. Definition of conditional averages 
The absolute dispersion curve shown in figure 5(a) has been obtained by an 
unconditioned average over all the advected particles. In order to disentangle the role 
of the different topological domains on the particle dispersion processes, here we define 
appropriate conditional averages which identify ‘topologically homogeneous ’ subsets 
a’ of advected particles. The conditional averages are defined by appropriate 
constraints on the sign and/or the amplitude of Q*. Quantitatively, we define 

A,2(t) = ( ( x - a ( t ’ ) ) . ( x - a ( t ’ ) ) ) , ,  (10) 
where t = t‘+ im Ats, t‘ = 0, i = 1,2,. . . , N J m ;  m determines the time discretization of 
the statistical treatment. At each value of t ,  the set of particles a’ considered in the 
evaluation of A:(t)  are selected such that the quantity 

e. = -1 1 Q*(a,s)ds 
t--0 to 

verifies the requirement P<o  or F>O, 
and/or Q: < e. < QT+AQ*, (13) 
where - 1 c e. < 1 and Q: is a value of Q* chosen as a threshold. The time to is an 
appropriate defined instant of time between the time origin t‘ and the current time t ;  
to defines the restrictivity of the conditional average. With (1 1)-(13), we will evaluate 
the absolute dispersion (10) with two different choices of to : 

(A 1) 
(A 11) 

to = t - im Ats, 
to = t - m  At,. 

With (A I), the ensemble average (10) is defined at each time t only over those particles 
a‘ for which the condition on is verified over the entire trajectory from t‘ to t .  It is 
a quite restrictive selection of the set a‘ which retains only those particles which have 
evolved, in a time-average sense, in the same topological domain from t‘ to t. With 
(A 11), the selection rule is less restrictive: in fact, here it is necessary only that the 
condition on e. be verified in the individual time interval m Ats immediately before the 
time t ,  independent of the past history of the particle between t‘ and to. In this latter 
case, the statistics are strictly representative of the topological domain under study 
only if t - to is larger than the Lagrangian decorrelation time q, owing to the mixing 
of different particles allowed by this type of conditional average. In the following, we 
will consider both types of conditional averages (A I and A 11) and different choices of 
m (m = 1, m = 10 for R128F10 and m = 1, m = 8 for R512F40). Hereinafter, the 
absolute dispersion (variance of the particle distribution) is given in units of the 
number of grid intervals; i.e. if Ax = 2n/R (R = 128 or R = 512) is the grid interval, 
A;(t)  = A,2(t)/Ax2. 

4.2. Dispersion in elliptic and hyperbolic domains 
Figure 8(a)  shows the absolute dispersion curves of A,2 as functions of time, for the 
simulation R128F10. These curves have been obtained with conditional average (1 1)- 
(13) of the type (A I), on the sign and amplitude of e. with m = 1, AQ* = 0.1. The 
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FIGURE 8. (a) The absolute dispersion A: versus time, for the simulation R128F10. The various curves 
have been obtained by the conditional average (1 1)-(13) of the type (A I) and represent the absolute 
dispersion as averaged over theparticles that havcevolved, for all t i E s  between t' andt,in the 
domains characterized by 0.9 < < 1 (A), 0.7 < Q* < OA(B), 0.6 < Q* < 0.7 (CL0.2 < Q* < 0.3 
(D), 0 <p < 0.1 (E), -0.2 < p< -0.3 (F), -0.6 < Q* < -0.7 (G), -0.7 < Q* < -0.78 (H), 
-0.8 < Q* < -0.9 (I), -0.9 < Q* < - 1 (J). (h) The time-averaged number of particles N ,  x 
that have remained inside the same domain (as characterized by a given range of Q* values) for all 
times between r' and t .  The two curves refer to experiment R128F10 and to a similar experiment with 
a field R512F40. 
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t 

FIGURE 9. Absolute dispersion A: versus time, for the simulation R128F10, as obtained by the 
conditional average (11)-(12) of the type (A 11). The curves A and B correspond to Q* > 0 and 
Q* < 0 respectively. 

curves thus represent the absolute dispersion as averaged over the particles that have 
evolved, for all times between t’ and t, in the domains characterized by 0.9 < < 1 
(A), 0.7 < e. < 0.8 (B), 0.6 < e. < 0.7 (C), 0.2 < < 0.1 (E), 

-0.8 < Q* < -0.9 (I), -0.9 < < - 1 (J). The number of particles a’ that are 
retained in the conditional averages for the various intervals of e. and the various 
values of t may be quite small or even vanishing; this produces the irregularities 
observed at large times (in the Brownian regime) for examples in curves A and B. 

For small dispersion times, the asymptotic behaviour ( 5 )  is well verified, with a 
proportionality factor (given by the Lagrangian kinetic energy) which is almost 
independent on the value of p. The Lagrangian kinetic energy is close to the value of 
the mean kinetic energy E, in agreement with the results reported in figure 7. At 
intermediate times, the dispersion law in the hyperbolic domains (p > 0) is 
proportional to tg. The dispersion in elliptic domains is characterized by a steeper slope, 
which is however less effective than for > 0 because the small-time ballistic regime 
(5 )  has a shorter duration in elliptic regions. We shall come back to the dispersion in 
elliptic domains in the following. In general, the results reported in figure 8 (a)  confirm 
that the unconditional average of figure 5(a) is dominated by the contributions of the 
hyperbolic domains, i.e. by the circulation cells at the boundary of the coherent 
structures and by the regions in the background turbulence in the proximity of the 
isoline w = 0. The ti behaviour is quite robust and it is observed for all regions 
characterized by Q* > 0, i.e. for the entire ensemble of hyperbolic regions. 

Figure 8 (b) shows the time-averaged number of particles that have remained inside 
the same domain (as characterized by a given range of p-values) during all the times 
between t’ and t. The two curves refer to experiment R128F10 described above and to 

< 0.3 (D), 0 < 
-0.2 < Q* < -0.3 (F), -0.6 < Q* < -0.7 (G), -0.7 < Q* < -0.8 (H), 
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FIGURE 10. The conditional absolute dispersion curves in strongly hyperbolic a& strongly elliptic 
regions for experiments (a) R128F10 and (b) R512F40. Curves A refer to Q* > 0.6 (strongly 
hyperbolic domains) and curves B to < -0.9 (strongly elliptic domains). Curves labelled 1 
correspond to a conditional average (A 11) with m = 1, curves labelled 2 correspond to (A 11) with 
rn = 10 or m = 8, curves labelled 3 correspond to (A I) with m = 10 or rn = 8. The dispersion in 
strongly hyperbolic regions is very weakly sensitive to the different types of conditional averages. For 
both R128FIO and R512F40, the & law is clearly confirmed for hyperbolic regions. At intermediate 
times, the dispersion in strongly elliptic rFgions (curves B - 1, B - 2 and B - 3) seems to be dominated 
by an anomalous dispersion law A: cc P. 
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a similar experiment with a field R512F40. The two numerical experiments provide 
similar results. The number of particles that stably remain in the regions where 
Q* < 0 is quite small, even in the proximity of the value Q* x - 1. Apparently, this 
result contradicts the fact that the vortex cores (characterized by Q* M - 1) are regions 
for long particle trapping. However, in the case of a regular particle sowing, the 
number of particles initially placed inside a vortex core cannot be large; in addition, 
neutral particles are sooner or later irreversibly ejected from the vortex where they are 
originally placed. The results of figure 8(b) thus indicate that the regions with 
Q* < 0 are not stable domains for neutral particles; in addition, they are domains 
where the instantaneous concentration of neutral particles is also usually low (recall 
figure 7). An interesting result concerns the low number of particles which remain 
stable in the regions where Q* M 1. In fact, the instantaneous concentration of particles 
in these regions is usually large (recall again figure 7). These two results taken together 
indicate that the turbulent mixing in highly hyperbolic regions is quite active: the 
instantaneous concentration of neutral particles is large in these regions but their 
residence time is small, leading to a small number of particles stably remaining in the 
regions where Q* z 1. 

From the above results, it is clear that the elliptic and hyperbolic regions induce 
different properties of the particle dispersion process, concerning both the duration of 
the ballistic regime (5) and the dispersion properties at intermediate times. In the 
elliptic regions where Q* c 0, the domain of validity of the small-time asymptotic 
behaviour (5 )  is shorter than for the hyperbolic regions where Q* > 0. This indicates 
that the integral Lagrangian scale TL is smaller in elliptic regions than in hyperbolic 
ones. This observation is consistent with the modelization of proposed by Babiano 
et al. (1990), giving TL - 2-f, where 2 is the local enstrophy. The shorter duration of 
the ballistic regime ( 5 )  in elliptic regions induce a loss of effectiveness in particle 
dispersion in these domains; this is also maintained at intermediate times even though 
the dispersion law in elliptic regions displays a steeper slope than in hyperbolic regions. 

To further confirm the role of the elliptic and hyperbolic regions on the global 
properties of particle dispersion, we now consider a much less restrictive conditional 
average, based on requiring e. > 0 and p < 0. The conditional average is obtained 
by using (1 l), (12) and (A 11) with m = 1. Because m = 1, the selection criterion is 
almost instantaneous. The value of is defined on a time interval At, = 0.003; this 
time interval is much shorter than the corresponding average Lagrangian integral 
timescale and the conditional average separates the different domains less effectively. 
The interest of this approach is to explore the robustness of the signature of elliptic and 
hyperbolic regions on particle dispersion, notwithstanding the mixing effect of the type 
of conditional averages used here. The conditional absolute dispersion for > 0 and e. < 0 are shown in figure 9. A global ti behaviour is well verified for > 0, even 
with this less restrictive type of conditional average. F o r e .  < 0, the global dispersion 
displays a steeper slope; in general, a clear difference between the global dispersion 
laws for p > 0 and p < 0 is detected, confirming the robustness of the signature of 
the different topological domains on the particle dispersion. 

4.3. Dispersion in strongly elliptic and hyperbolic domains 
We now explore the dispersion law in strongly hyperbolic and strongly elliptic 
domains. The selection of these domains is obtained by using the conditions > 0.6 
and < -0.9. We have considered a larger Q*-interval in hyperbolic regions to take 
into account the entire structure of the circulation cells. In the following we explicitly 
consider both experiments R128F10 and R512F40. The value of e. is defined by (1 1) 
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FIGURE 1 1 .  Absolute dispersJion in the strongly hyperbolic regions scaled by t-9 (a) and in the strongly 
elliptic regions scaled by t-x (b). Curves labelled 1 correspond to a conditional average (A 11) with 
rn = 1, curves labelled 2 correspond to (A 11) with m = 10 or m = 8, curves labelled 3 correspond to 
(A 1) with m = 10 or rn = 8. Experiment R128F10. 
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FIGURE 12. Absolute disperssion in the strongly hyperbolic regions scaled by td (a) and in the strongly 
elliptic regions scaled by t-j (b). Curves labelled 1 correspond to a conditional average (A 11) with 
m = 1, curves labelled 2 correspond to (A 11) with m = 10 or m = 8, curves labelled 3 correspond 
to (A I) with m = 10 or m = 8. Experiment R512F40. 
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with three different time averages: (A I) with m = 10 for R128F10 and m = 8 for 
R512F40; (A 11) with m = 1 and m = 10 for R128F10; and m = 1 and m = 8 for 
R512F40. 

Figure 1O(a, b) shows the results of the analysis. In each part we have superposed the 
curves corresponding to the different types of conditional averages for the two 
experiments. Curves A refer to e* > 0.6 and curves B to Q* < -0.9. Curves labelled 
1 correspond to (A 11) with m = 1, curves labelled 2 correspond to (A 11) with m = 10 
or m = 8, curves labelled 3 correspond to (A I) with m = 10 or m = 8. The dispersion 
in strongly hyperbolic regions is very weakly sensitive to the different types of 
conditional averages. For both R128F10 and R512F40, the tg law is clearly confirmed 
for hyperbolic regions. The effect of choosing different types of conditional averages is 
more important for dispersion in elliptic regions. In general, in these regions the 
duration of the small-time ballistic regime is clearly shortened, as a result of which the 
intermediate time dispersion law is steeper but less effective. At intermediate times, the 
dispersion in strongly elliptic regions (curves B 1, B 2 and B 3) seems to be dominated 
by an anomalous dispersion law A: cc ti. Note that a ti law would be consistent with 
the observed single-particle dispersion of freely drifting buoys in mesoscale ocean flows 
(see e.g. Provenzale et al. 1991). 

To better characterize the correct slope of the anomalous dispersion laws, in figures 
11 (a, b) and 12(a, b) we show the absolute dispersion curves displayed in figure 
1O(a, b) scaled respectively by t-f and t-g. A clear plateau in A: t-f emerges for the 
R128F10 experiment, while it is less prominent for the R512F40 experiment. 
Conversely, a plateau in A: t-1 is clearly visible for R5 12F40, while it is almost absent 
for R12F10. The differences between the two experiments are most probably due to a 
different extension of the hyperbolic and elliptic regions in the R128F 10 and R5 12F40 
fields induced by the different forcing scale. In general, the above results indicate that 
the tj law is quite robust and it is observed independently of the amplitude of p. By 
contrast, the appearance of a ti law strongly depends on the value of the threshold e* 
used to build the conditional averages; this law is observed only for strongly elliptic 
regions and it is less robust. 

5. Summary and conclusions 
In this work we have studied the dynamics and the dispersion properties of passively 

advected neutral particles in two-dimensional turbulence. The results of the numerical 
simulations discussed here indicate that the single-particle dispersion properties are 
clearly affected by the characteristic topology of two-dimensional turbulence, as 
parametrized by the Weiss criterion (Weiss 198 1) which provides a segmentation of the 
turbulent field into elliptic and hyperbolic regions. In fact, we have shown that the 
dispersion properties in hyperbolic and elliptic regions of the flow, characterized 
respectively by Q > 0 and Q < 0, are quite different. For example, the duration of the 
small-time ballistic regime, A' cc t2 ,  is definitely shorter in elliptic regions than in 
hyperbolic ones. 

The careful study of single-particle dispersion and the use of appropriate conditional 
averages on the set of advected particles has led to the discovery of two intermediate 
regimes of anomalous diffusion. At intermediate times, absolute dispersion in 
hyperbolic regions is characterized by a scaling law A2 cc ti, while dispersion in highly 
elliptic regions is characterized by an intermediate dispersion law A' cc 8. Although the 
steepness of the power law in elliptic regions is larger than in hyperbolic domains, the 
absolute dispersion A 2  is in general less effective in elliptic regions owing to the more 
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limited duration of the small-time ballistic regime in these domains (i.e. in general 
A:ll < The two intermediate dispersion laws have, however, a very different 
robustness. In fact, the presence of the tT law is independent of the precise value of the 
threshold p, the requirement > 0 being sufficient. In addition, this law is found for 
the ensemble of hyperbolic regions, independent of their energy and of the fact that 
they may be circulation cells or hyperbolic patches in the background turbulence. By 
contrast, the 6 law is much less robust; in fact, this is clearly observed only for strongly 
elliptic regions where 

When global (unconditioned) averages on particle dispersions are considered, the 
intermediate anomalous dispersion regime associated with the action of hyperbolic 
domains is still often observed. This is because the different domains of the turbulent 
field are not equally sampled by the advected particles. In fact, the analysis of the 
particle concentration in the different topological domains indicates that neutral 
particles tend to leave elliptic regions (such as the vortex cores) and to concentrate 
in hyperbolic regions where deformation dominates rotation. In particular, the particle 
distribution displays a marked tendency to concentrate in the proximity of the isolines 
w = 0. As a consequence of this, the action of hyperbolic regions is predominant on the 
particle dispersion processes ; the intermediate dispersion law typical of these domains 
is robustly observed on the global properties of absolute dispersion. This confirms that 
Lagrangian tracking of neutral particles does not provide a good measure of the elliptic 
regions of the flow. 

Interestingly, recent measurements of drifter dispersion in turbulent flows have 
indicated the presence of an intermediate scaling law A2 cc &. If this result were 
interpreted in the framework of the two-dimensional turbulent dynamics considered 
here, then it would indicate that the drifters preferentially sample the elliptic regions 
of the flow. However, we have shown here that neutral particles tend to concentrate in 
hyperbolic domains. A possible explanation of this apparent discrepancy may rely 
upon the fact that drifters are not perfect (neutral) Lagrangian tracers, they may 
consequently behave quite differently from the neutral particles considered here. A 
study of the dispersion properties of non-perfect Lagrangian tracers (such as heavy and 
light impurities, see e.g. Crisanti et al. 1992) will be addressed in a future study. 
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